On Listing, Sampling, and Counting the Chordal Graphs with Edge Constraints
نویسندگان
چکیده
We discuss the problems to list, sample, and count the chordal graphs with edge constraints. The edge constraints are given as a pair of graphs one of which contains the other and one of which is chordal, and the objects we look at are the chordal graphs contained in one and containing the other. This setting is a natural generalization of chordal completions and deletions. For the listing problem, we give an efficient algorithm running in amortized polynomial time per output with polynomial space. For the sampling problem, we give an instance for which a natural Markov chain suffers from an exponential mixing time. For the counting problem, we show some #P-completeness results. These results provide a unified viewpoint from algorithms theory to problems arising from various areas such as statistics, data mining, and numerical computation. key words: graph sandwich, chordal completion/deletion, enumeration, Markov chain Monte Carlo, #P-completeness.
منابع مشابه
Counting the number of independent sets in chordal graphs
We study some counting and enumeration problems for chordal graphs, especially concerning independent sets. We first provide the following efficient algorithms for a chordal graph: (1) a linear-time algorithm for counting the number of independent sets; (2) a linear-time algorithm for counting the number of maximum independent sets; (3) a polynomial-time algorithm for counting the number of ind...
متن کاملLinear-Time Counting Algorithms for Independent Sets in Chordal Graphs
We study some counting and enumeration problems for chordal graphs, especially concerning independent sets. We first provide the following efficient algorithms for a chordal graph: (1) a linear-time algorithm for counting the number of independent sets; (2) a linear-time algorithm for counting the number of maximum independent sets; (3) a polynomial-time algorithm for counting the number of ind...
متن کاملCounting the Number of Matchings in Chordal and Chordal Bipartite Graph Classes
We provide polynomial-time algorithms for counting the number of perfect matchings and the number of matchings in chain graphs, cochain graphs, and threshold graphs. These algorithms are based on newly developed subdivision schemes that we call a recursive decomposition. On the other hand, we show the #P-completeness for counting the number of perfect matchings in chordal graphs, split graphs a...
متن کاملComplement of Special Chordal Graphs and Vertex Decomposability
In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.
متن کاملCapturing Logarithmic Space and Polynomial Time on Chordal Claw-Free Graphs
We show that the class of chordal claw-free graphs admits LREC=-definable canonization. LREC= is a logic that extends first-order logic with counting by an operator that allows it to formalize a limited form of recursion. This operator can be evaluated in logarithmic space. It follows that there exists a logarithmic-space canonization algorithm for the class of chordal claw-free graphs, and tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008